Abstract
The complexity of the underwater environment enables significant energy consumption of sensor nodes for communication with base stations in underwater wireless sensor networks (UWSNs), and the energy consumption of nodes in different water depths is unbalanced. How to improve the energy efficiency of sensor nodes and meanwhile balance the energy consumption of nodes in different water depths in UWSNs are thus urgent concerns. Therefore, in this paper, we first propose a novel hierarchical underwater wireless sensor transmission (HUWST) framework. We then propose a game-based, energy-efficient underwater communication mechanism in the presented HUWST. It improves the energy efficiency of the underwater sensors personalized according to the various water depth layers of sensor locations. In particular, we integrate the economic game theory in our mechanism to trade off variations in communication energy consumption due to sensors in different water depth layers. Mathematically, the optimal mechanism is formulated as a complex nonlinear integer programming (NIP) problem. A new energy-efficient distributed data transmission mode decision algorithm (E-DDTMD) based on the alternating direction method of multipliers (ADMM) is thus further proposed to tackle this sophisticated NIP problem. The systematic simulation results demonstrate the effectiveness of our mechanism in improving the energy efficiency of UWSNs. Moreover, our presented E-DDTMD algorithm achieves significantly superior performance to the baseline schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.