Abstract
Device-to-device (D2D) communication is a promising technology for improving the performance of proximity-based services. This paper demonstrates how the integration of D2D communication in cellular systems operating under dynamic time division duplex (TDD) can improve energy efficiency. We perform joint optimization of mode selection, uplink/downlink transmission period, and power allocation to minimize the transmission energy consumption while satisfying a traffic requirement. Solutions are developed for two scenarios: with and without interference among D2D communications. Both formulations are expressed as mixed-integer nonlinear programming problems, which are NP-hard in general. We exploit problem structure to develop efficient solutions for both scenarios. For the interference-free case, we design algorithms that find the optimal solution in polynomial time. When considering interference, we propose a customized solver based on branch-and-bound that reduces the search complexity by taking advantage of the problem-specific proprieties. We complement this solver by a more practical heuristic algorithm. Simulation results demonstrate that D2D communications in dynamic TDD systems can yield significant energy savings and improved spectral efficiency compared with the traditional cellular communication. Furthermore, we give analytical characterizations of the receiver locations relative to a given transmitter where D2D communication is optimal. These regions can be surprisingly large and not necessarily circular.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.