Abstract

Target tracking is one of the most widely used applications of wireless sensor network (WSN). Efficient usage of energy is a key issue in WSN application such as target tracking. Another important criterion is a tracking accuracy that can be achieved by using appropriate tracking mechanism. Because of the special characteristic of WSN, there is a trade-off between tracking accuracy and power consumption. Our aim is to improve tracking accuracy as well as provide energy-efficient solution by integrating the concept of clustering and prediction techniques. This paper presents Energy-Efficient Constant Gain Kalman Filter based Tracking (EECGKFT) algorithm to optimize the energy usage and to increase the tracking accuracy. There is also a need to collect data from network having a mobile Base Station (BS). Hence, performance of proposed algorithm is analyzed for a static BS and also for mobile BS. The results depict that proposed algorithm performs better compared to the existing algorithms in energy efficiency and prediction accuracy. Analysis of results validates that EECGKFT increases energy efficiency by reducing transmission of unnecessary data in the sensor network environment and also provides good tracking results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.