Chemical Engineering Research and Design | VOL. 125

Energy efficient configuration of Membrane Distillation units for brackish water desalination using exergy analysis

Publication Date Sep 1, 2017


Abstract Membrane Distillation (MD) became a promising technology for water desalination. MD is energy-driven process and with the limitation and cost of energy resources it is imperative to examine improving the energy effectiveness of such units. For this purpose, Exergy analysis is applied to a validated model of typical MD module to identify the sources of inefficiencies. Reject brine is found to be an origin for exergy losses when the energy of the geothermal feed is not fully utilized. In this case, feeding the reject brine to sequential MD units connected in series can capitalize the production rate and energy utilization. In fact, the exergy losses are reduced from 70% to 30%. The enhanced energy efficiency made the exiting warm permeate responsible for another exergy losses if disposed to the environment. Repeated recycling of the outlet permeates to successive MD vessels connected in parallel improves the process performance. This cascaded structure of the desalination process converts most of the available exergy in the geothermal source into work to produce additional fresh water and dispose the salty brine and warm permeate at very low exergy levels.


Membrane Distillation Cost Of Energy Resources Exergy Analysis Reject Brine Geothermal Source Exergy Losses Water Desalination Energy Utilization Configuration Of Units Technology For Desalination

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 19, 2022 to Sep 25, 2022

R DiscoverySep 26, 2022
R DiscoveryArticles Included:  5

Disaster Prevention and Management ISSN: 0965-3562 Article publication date: 20 September 2022 This paper applies the theory of cascading, interconnec...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.