Abstract

Wireless communication in a network of mobile devices is a challenging and resource demanding task, due to the highly dynamic network topology and the wireless channel randomness. This paper investigates information broadcast schemes in 2D mobile ad-hoc networks where nodes are initially randomly distributed and then move following a random direction mobility model. Based on an in-depth analysis of the popular Susceptible-Infectious-Recovered epidemic broadcast scheme, this paper proposes a novel energy and bandwidth efficient broadcast scheme, named the energy-efficient broadcast scheme, which is able to adapt to fast-changing network topology and channel randomness. Analytical results are provided to characterize the performance of the proposed scheme, including the fraction of nodes that can receive the information and the delay of the information dissemination process. The accuracy of analytical results is verified using simulations driven by both the random direction mobility model and a real world trace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.