Abstract

SummarySpatial modulation is a potential candidate for 5G wireless communication systems that provides high spectral efficiency with high reliability and low complexity. Spatial modulation conveys information in the index of transmitting antenna along with conventional modulation scheme. Also, energy efficiency communication plays a vital role in 5G wireless communication. In this article, energy efficiency and spectral efficiency are focused on a bidirectional relay network. In the proposed bidirectional relay network, the energy consumption burden at the relay node is reduced by placing a power splitter that coordinates the energy harvesting and information processing at the relay node. Spatial modulation is employed at all nodes to reduce the effect of interchannel interference and synchronization problem in the receiver. The combined effect of spatial modulation in all nodes and energy harvest at the relay node are analyzed in the bidirectional relay network. The end‐to‐end outage probability expression for the bidirectional relay network is derived in terms of power splitting factor at relay node. Analytical simulation results have been verified by Monte‐Carlo simulations. The overall performance of the proposed system is compared with an existing literature and found that the proposed system is having better spectral efficiency and energy harvesting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call