Abstract

SUMMARYRecent advances in information theory and networking, e.g. aggregation, network coding or rateless codes, have significantly modified data dissemination in wireless networks. These new paradigms create new threats for security such as pollution attacks and denial of services (DoS). These attacks exploit the difficulty to authenticate data in such contexts. The particular case of xor network coding is considered herein. We investigate different strategies based on message authentication codes algorithms (MACs) to thwart these attacks. Yet, classical MAC designs are not compatible with the linear combination of network coding. Fortunately, MACs based on universal hash functions (UHFs) match nicely the needs of network coding: some of these functions are linear h(x1⊕x2) = h(x1)⊕h(x2). To demonstrate their efficiency, we consider the case of wireless sensor networks (WSNs). Although these functions can drastically reduce the energy consumption of authentication (up to 68% gain over the classical designs is observed), they increase the threat of DoS. Indeed, an adversary can disrupt all communications by polluting few messages. To overcome this problem, a group testing algorithm is introduced for authentication resulting in a complexity linear in the number of attacks. The energy consumption is analyzed for cross‐point and butterfly network topologies with respect to the possible attack scenarios. The results highlight the trade‐offs between energy efficiency, authentication and the effective throughput for the different MAC modes. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.