Abstract
Specialized hardware accelerators can significantly improve the performance and power efficiency of compute systems. In this paper, we focus on hardware accelerators for graph analytics applications and propose a configurable architecture template that is specifically optimized for iterative vertex-centric graph applications with irregular access patterns and asymmetric convergence. The proposed architecture addresses the limitations of the existing multi-core CPU and GPU architectures for these types of applications. The SystemC-based template we provide can be customized easily for different vertex-centric applications by inserting application-level data structures and functions. After that, a cycle-accurate simulator and RTL can be generated to model the target hardware accelerators. In our experiments, we study several graph-parallel applications, and show that the hardware accelerators generated by our template can outperform a 24 core high end server CPU system by up to 3x in terms of performance. We also estimate the area requirement and power consumption of these hardware accelerators through physical-aware logic synthesis, and show up to 65x better power consumption with significantly smaller area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.