Abstract

To extend the lifetime of wireless sensor networks, reducing and balancing energy consumptions are main concerns in data collection due to the power constrains of the sensor nodes. Unfortunately, the existing data collection schemesmainly focus on energy saving but overlook balancing the energy consumption of the sensor nodes. In addition, most of them assume that each sensor has a global knowledge about the network topology. However, in many real applications, such a global knowledge is not desired due to the dynamic features of the wireless sensor network. In this paper, we propose an approximate self-adaptive data collection technique (ASA), to approximately collect data in a distributed wireless sensor network. ASA investigates the spatial correlations between sensors to provide an energyefficient and balanced route to the sink, while each sensor does not know any global knowledge on the network.We also show that ASA is robust to failures. Our experimental results demonstrate that ASA can provide significant communication (and hence energy) savings and equal energy consumption of the sensor nodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.