Abstract

SummaryA mobile ad hoc computational grid is a distributed computing infrastructure that allows mobile nodes to share computing resources in a mobile ad hoc environment. Compared to traditional distributed systems such as grids and clouds, resource allocation in mobile ad hoc computational grids is not straightforward because of node mobility, limited battery power and an infrastructure‐less network environment. The existing schemes are either based on a decentralized architecture that results in poor allocation decisions or assume independent tasks. This paper presents a scheme that allocates interdependent tasks and aims to reduce task completion time and the amount of energy consumed in transmission of data. This scheme comprises two key algorithms: resource selection and resource allocation. The resource selection algorithm is designed to select nodes that remain connected for a longer period, whereas the resource assignment or allocation algorithm is developed to allocate interdependent tasks to the nodes that are accessible at the minimum transmission power. The scheme is based on a hybrid architecture that results in effective allocation decisions, reduces the communication cost associated with the exchange of control information, and distributes the processing burden among the nodes. The paper also investigates the relationship between the data transfer time and transmission energy consumption and presents a power‐based routing protocol to reduce data transfer costs and transmission energy consumption. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.