Abstract

Low resolution analog-to-digital converters (ADCs) can be employed to improve the energy efficiency (EE) of a wireless receiver since the power consumption of each ADC is exponentially related to its sampling resolution and the hardware complexity. In this paper, we aim to jointly optimize the sampling resolution, i.e., the number of ADC bits, and analog/digital hybrid combiner matrices which provides highly energy efficient solutions for millimeter wave multiple-input multiple output systems. A novel decomposition of the hybrid combiner to three parts is introduced: the analog combiner matrix, the bit resolution matrix and the baseband combiner matrix. The unknown matrices are computed as the solution to a matrix factorization problem where the optimal, fully digital combiner is approximated by the product of these matrices. An efficient solution based on the alternating direction method of multipliers is proposed to solve this problem. The simulation results show that the proposed solution achieves high EE performance when compared with existing benchmark techniques that use fixed ADC resolutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.