Abstract
Cognitive radio (CR) is a promising technology to alleviate spectrum shortage and satisfy the huge demand of bandwidth for multimedia streaming in future mobile computing systems. The inherent features of CR pose tough challenges in provisioning quality of service (QoS) for acceptable user experience and minimizing energy consumption for multimedia transmissions. In this paper, scalable video coding and transmission rate adaptation are jointly considered in an energy-efficient scheme for transmissions of streaming media over CR with QoS guarantee. An event-driven discrete-time Markov control process model is introduced to formulate the QoS-guaranteed energy-efficient transmission problem as a constrained stochastic optimization problem. Based on estimations of potentials and the difference between performance measurement and QoS requirement, an online policy iteration algorithm is proposed to optimize energy consumption under QoS constraints directly. By exploiting the system dynamics, this algorithm does not depend on any prior knowledge of channel availability or fading statistics, and it can converge to a near optimum with a low computational burden. Simulation results demonstrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.