Abstract

A district heating and hot water supply system is presented which synthetically utilizes geothermal energy, solar thermal energy and natural gas thermal energy. The multi-energy utilization system has been set at the new campus of Tianjin Polytechnic University (TPU). A couple of deep geothermal wells which are 2 300 m in depth were dug. Deep geothermal energy cascade utilization is achieved by two stages of plate heat exchangers (PHE) and two stages of water source heat pumps (WSHP). Shallow geothermal energy is used in assistant heating by two ground coupled heat pumps (GCHPs) with 580 vertical ground wells which are 120 m in depth. Solar thermal energy collected by vacuum tube arrays (VTAs) and geothermal energy are complementarily utilized to make domestic hot water. Superfluous solar energy can be stored in shallow soil for the GCHP utilization. The system can use fossil fuel thermal energy by two natural gas boilers (NGB) to assist in heating and making hot water. The heating energy efficiency was measured in the winter of 2010-2011. The coefficients of performance (COP) under different heating conditions are discussed. The performance of hot water production is tested in a local typical winter day and the solar thermal energy utilization factor is presented. The rusults show that the average system COP is 5.75 or 4.96 under different working conditions, and the typical solar energy utilization factor is 0.324.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call