Abstract

This paper first provides a brief survey on existing traffic offloading techniques in wireless networks. Particularly as a case study, we put forward an online reinforcement learning framework for the problem of traffic offloading in a stochastic heterogeneous cellular network (HCN), where the time-varying traffic in the network can be offloaded to nearby small cells. Our aim is to minimize the total discounted energy consumption of the HCN while maintaining the quality-of-service (QoS) experienced by mobile users. For each cell (i.e., a macro cell or a small cell), the energy consumption is determined by its system load, which is coupled with system loads in other cells due to the sharing over a common frequency band. We model the energy-aware traffic offloading problem in such HCNs as a discrete-time Markov decision process (DTMDP). Based on the traffic observations and the traffic offloading operations, the network controller gradually optimizes the traffic offloading strategy with no prior knowledge of the DTMDP statistics. Such a model-free learning framework is important, particularly when the state space is huge. In order to solve the curse of dimensionality, we design a centralized $Q$ -learning with compact state representation algorithm, which is named $QC$ -learning. Moreover, a decentralized version of the $QC$ -learning is developed based on the fact the macro base stations (BSs) can independently manage the operations of local small-cell BSs through making use of the global network state information obtained from the network controller. Simulations are conducted to show the effectiveness of the derived centralized and decentralized $QC$ -learning algorithms in balancing the tradeoff between energy saving and QoS satisfaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.