Abstract
Characterizing the fundamental energy efficiency (EE) performance of multiple-input–multiple-output interfering broadcast channels (MIMO-IFBC) is important for the design of green wireless system. In this paper, we propose a new network architecture proposition based on EE maximization for Multi-Cell MIMO-IFBC within the context of interference alignment (IA). Particularly, EE is maximized subject to maximum power and minimum throughput constraints. We propose two schemes to optimize EE for different signal-to-noise ratio (SNR) regions. For high-SNR operating regions, we employ a grouping-based IA scheme to jointly cancel intra- and inter-cell interferences and thus transform the MIMO-IFBC to a single-cell MIMO scenario. A gradient-based power adaptation scheme is proposed based on water-filling power adaptation and singular value decomposition to maximize EE for each cell. For moderate SNR cases, we propose an approach using dirty paper coding (DPC) with the principle of multiple access channel and broadcast channel duality to perform IA while maximizing EE in each cell. The algorithm in its dual form is solved using a subgradient method and a bisection searching scheme. Simulation results demonstrate the superior performance of the proposed schemes over several existing approaches. It also shows that interference-nulling-based IA approaches outperform hybrid DPC-IA approach in high-SNR region, and the opposite occurs in low-SNR region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.