Abstract

In this paper, a plane spiral orbital angular momentum (PS-OAM) mode-groups (MGs) based multi-user multiple-input-multiple-out-put (MIMO) non-orthogonal multiple access (NOMA) system is studied, where a base station (BS) transmits date to multiple users by utilizing the generated PSOAM beams. For such scenario, the interference between users in different PSOAM-mode groups can be avoided, which leads to a significant performance enhancement. We aim to maximize the energy efficiency (EE) of the system subject to the total transmission power constraint and the minimum rate constraint. This design problem is non-convex by optimizing the power allocation, and thus is quite difficult to tackle directly. To solve this issue, we present a bisection-based power allocation algorithm where the bisection method is exploited in the outer layer to obtain the optimal EE and a power distributed iterative algorithm is exploited in the inner layer to optimize the transmit power. Simulation results validate the theoretical findings and demonstrate the proposed system can achieve better performance than the traditional multi-user MIMO system in terms of EE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call