Abstract

Characterizing the fundamental energy efficiency (EE) limits of MIMO broadcast channels (BC) is significant for the development of green wireless communications. We address the EE optimization problem for MIMO-BC in this paper and consider a practical power model, i.e., taking into account a transmit independent power which is related to the number of active transmit antennas. Under this setup, we propose a new optimization approach, in which the transmit covariance is optimized under fixed active transmit antenna sets, and then active transmit antenna selection (ATAS) is utilized. During the transmit covariance optimization, we propose a globally optimal energy efficient iterative water-filling scheme through solving a series of concave-convex fractional programs based on the block-coordinate ascent algorithm. After that, ATAS is employed to determine the active transmit antenna set. Since activating more transmit antennas can achieve higher sum-rate but at the cost of larger transmit independent power consumption, there exists a tradeoff between the sum-rate gain and the power consumption. Here ATAS can explore the optimal tradeoff curve and thus further improve the EE. Optimal exhaustive search and low-complexity norm based ATAS schemes are developed. Through simulations, we discuss the effect of different parameters on the EE of the MIMO-BC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.