Abstract

Abstract Oxygen Enriched Air (OEA) is used in numerous chemical, medical and industrial applications (e.g. combustion enhancement for natural gas furnaces, coal gasification). More recently, it attracted attention for hybrid carbon capture processes. Membrane separation has shown growing interest for OEA production, providing an alternative to conventional air separation processes such as cryogenic distillation and pressure swing adsorption. Nevertheless, based on the current polymeric materials performances, membranes are usually considered to be competitive only for medium O2 purity (25-40%) and small scale plants (10-25 tons/day). Improvement in membrane materials permeability and permselectivity (O2 over N2) is often reported to be a critical issue in order to increase the attainable O2 purity and to make the process more energy efficient. Recently, several membrane materials have been reported to show performances far above the permeability/selectivity trade-off of dense polymers. In this study, the potential of current and prospective membrane materials to achieve OEA production thanks to a single stage process is analysed through a rigorous simulation approach. The two processes (membrane and cryogenic distillation) are critically compared in terms of energy efficiency (kWh/ton O2), depending on O2 purity and on membrane material selectivity levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.