Abstract

Energy efficiency of servers has become a significant issue over the last years. Load distribution plays a crucial role in the improvement of energy efficiency as (un-)balancing strategies can be leveraged to distribute load over one or multiple systems in a way in which resources are utilized at high performance, yet low overall power consumption. This can be achieved on multiple levels, from load distribution on single CPU cores to machine level load balancing on distributed systems. With modern day server architectures providing load balancing opportunities at several layers, answering the question of optimal load distribution has become non-trivial. Work has to be distributed hierarchically in a fashion that enables maximum energy efficiency at each level. Current approaches balance load based on generalized assumptions about the energy efficiency of servers. These assumptions are based either on very machine-specific or highly generalized observations that may or may not hold true over a variety of systems and configurations. In this paper, we use a modified version of the SPEC SERT suite to measure the energy efficiency of a variety of hierarchical load distribution strategies on single and multi-node systems. We introduce a new strategy and evaluate energy efficiency for homogeneous and heterogeneous workloads over different hardware configurations. Our results show that the selection of a load distribution strategy depends heavily on workload, system utilization, as well as hardware. Used in conjunction with existing strategies, our new load distribution strategy can reduce a single system's power consumption by up to 10.7%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call