Read

Energy Efficiency of Electro-Driven Brackish Water Desalination: Electrodialysis Significantly Outperforms Membrane Capacitive Deionization

Publication Date Feb 21, 2020

Abstract

Electro-driven technologies are viewed as a potential alternative to the current state-of-the-art technology, reverse osmosis, for the desalination of brackish waters. Capacitive deionization (CDI), based on the principle of electrosorption, has been intensively researched under the premise of being energy efficient. However, electrodialysis (ED), despite being a more mature electro-driven technology, has yet to be extensively compared to CDI in terms of energetic performance. In this study, we utilize Nernst–Planck based models for continuous flow ED and constant-current membrane capacitive deionization (MCDI) to systematically evaluate the energy consumption of the two processes. By ensuring equivalently sized ED and MCDI systemsin addition to using the same feed salinity, salt removal, water recovery, and productivity across the two technologiesenergy consumption is appropriately compared. We find that ED consumes less energy (has higher energy efficiency) than MCDI for all investigated conditions. Notably, our results indicate that the performance gap between ED and MCDI is substantial for typical brackish water desalination conditions (e.g., 3 g L–1 feed salinity, 0.5 g L–1 product water, 80% water recovery, and 15 L m–2 h–1 productivity), with the energy efficiency of ED often exceeding 30% and being nearly an order of magnitude greater than MCDI. We provide further insights into the inherent limitations of each technology by comparing their respective components of energy consumption, and explain why MCDI is unable ...

Concepts

Membrane Capacitive Deionization Electrodialysis Feed Salinity Water Recovery Brackish Water Capacitive Deionization Salt Removal Reverse Osmosis Higher Energy Efficiency Feed Water Recovery

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 19, 2022 to Sep 25, 2022

R DiscoverySep 26, 2022
R DiscoveryArticles Included:  5

Disaster Prevention and Management ISSN: 0965-3562 Article publication date: 20 September 2022 This paper applies the theory of cascading, interconnec...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.