Water Research | VOL. 106
Read

Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination

Publication Date Dec 1, 2016

Abstract

As reverse osmosis (RO) desalination capacity increases worldwide, the need to reduce its specific energy consumption becomes more urgent. In addition to the incremental changes attainable with improved components such as membranes and pumps, more significant reduction of energy consumption can be achieved through time-varying RO processes including semi-batch processes such as closed-circuit reverse osmosis (CCRO) and fully-batch processes that have not yet been commercialized or modelled in detail. In this study, numerical models of the energy consumption of batch RO (BRO), CCRO, and the standard continuous RO process are detailed. Two new energy-efficient configurations of batch RO are analyzed. Batch systems use significantly less energy than continuous RO over a wide range of recovery ratios and source water salinities. Relative to continuous RO, models predict that CCRO and batch RO demonstrate up to 37% and 64% energy savings, respectively, for brackish water desalination at high water recovery. For batch RO and CCRO, the primary reductions in energy use stem from atmospheric pressure brine discharge and reduced streamwise variation in driving pressure. Fully-batch systems further reduce energy consumption by not mixing streams of different concentrations, which CCRO does. These results demonstrate that time-varying processes can significantly raise RO energy efficiency.

Concepts

Closed-circuit Reverse Osmosis Reverse Osmosis Desalination Reverse Osmosis Processes Batch Reverse Osmosis Time-varying Processes Reverse Osmosis Continuous Reverse Osmosis High Water Recovery Specific Energy Consumption Energy Consumption

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Coronavirus Research Articles published between Sep 26, 2022 to Oct 02, 2022

R DiscoveryOct 03, 2022
R DiscoveryArticles Included:  5

Introduction: Test solutions (Biotrue, renu Advanced [Bausch and Lomb], ACUVUE RevitaLens [Johnson and Johnson Vision], cleadew [Ophtecs corp.] or AOS...

Read More

Good health Research Articles published between Sep 26, 2022 to Oct 02, 2022

R DiscoveryOct 03, 2022
R DiscoveryArticles Included:  2

Patient and public involvement in health care is considered indispensable in the way we conduct daily pediatric neurology practice, and in the develop...

Read More

Quality Of Education Research Articles published between Sep 26, 2022 to Oct 02, 2022

R DiscoveryOct 03, 2022
R DiscoveryArticles Included:  5

Ingenta is not the publisher of the publication content on this website. The responsibility for the publication content rests with the publishers prov...

Read More

Gender Equality Research Articles published between Sep 26, 2022 to Oct 02, 2022

R DiscoveryOct 03, 2022
R DiscoveryArticles Included:  3

Introduction: As of early March 2022, the COVID-19 pandemic has killed more 5.9 million people worldwide, and infected more than 437 million.

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.