Abstract

Demand for wireless and mobile data is increasing along with development of virtual reality (VR), augmented reality (AR), mixed reality (MR), and extended reality (ER) applications. In order to handle ultra-high data exchange rates while offering low latency levels, fifth generation (5G) networks have been proposed. Energy efficiency is one of the key objectives of 5G networks. The notion is defined as the ratio of throughput and total power consumption, and is measured using the number of transmission bits per Joule. In this paper, we review state-of-the-art techniques ensuring good energy efficiency in 5G wireless networks. We cover the base-station on/off technique, simultaneous wireless information and power transfer, small cells, coexistence of long term evolution (LTE) and 5G, signal processing algorithms, and the latest machine learning techniques. Finally, a comparison of a few recent research papers focusing on energy-efficient hybrid beamforming designs in massive multiple-input multiple-output (MIMO) systems is presented. Results show that machine learningbased designs may replace best performing conventional techniques thanks to a reduced complexity machine learning encoder

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.