Abstract

The proper design of courtyards and atriums is key in providing sufficient daylight inside buildings as well as major energy savings in electric lighting. Although a suitable design requires calculations using lighting simulation software or complex algorithms, architects lack a quick and precise procedure to determine proper design. The aim of this research is therefore to offer a fast accurate method for determining the daylight factor for different points on a rectangular courtyard or the central space of an atrium, based on the variable geometry and reflectance of the inner surfaces. Firstly, daylight factors are defined using measurements in scale models in an artificial sky and values obtained in real courtyards under real overcast skies. The sky component is subsequently defined based on earlier studies and Tregenza algorithms in order to quantify the reflected component. Following the curve fitting process, a predictive method of daylight factors is defined and compared with the previous measures. The comparison demonstrates that the predictive method offers an average accuracy of over 90% based on a quick and easy calculation. Finally, the energy saving in electric lighting is quantified following the predictive method established.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call