Abstract

Hemp-based building envelopes have gained significant popularity in developed countries, and now the trend of constructing houses with hemp-clay blocks is spreading to developing countries like Morocco. Investigating the hygrothermal behavior of such structures under actual climate conditions is essential for advancing and promoting this sustainable practice. This paper presents an in-depth experimental characterization of a commercial hemp-clay brick that has been exposed to the outdoor environment for four years, in addition to field measurements on a building scale demonstration prototype. Additionally, the study simulates 17 representative cities to assess the hygrothermal performance and energy-saving potential in each of Morocco's six existing climate zones, using the EnergyPlus engine. The experimental campaign's findings demonstrate excellent indoor air temperature and relative humidity regulation within the hemp-clay wall building, leading to satisfactory levels of thermal comfort within hemp-clay wall buildings. This is attributed to the material's good thermal conductivity and excellent moisture buffering capacity (found to be 0.31 W/mK and 2.25 g/m2%RH), respectively). The energy simulation findings also point to significant energy savings, with cooling and heating energy reductions ranging from 27.7% to 47.5% and 33.7% to 79.8%, respectively, as compared to traditional Moroccan buildings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call