Abstract

The industrial sector is one of the most energy-intensive sectors, with a share of nearly 38 % (156 EJ) of all energy used globally in 2020. Historical energy demand and consumption data from a poultry processing plant have been analyzed to lower greenhouse gas emissions (GHG) and reliance on traditional energy sources. The study includes energy, economic, and emissions analyses for (a) solar photovoltaic (PV) systems, (b) biomass fuels, and (c) coal-fired with wood. Fixed, single, and two-axis tracking solar PV systems that are company-owned and funded by banks are considered. The historical energy consumption data of the plant shows that 52.36 % of energy demand is met by electrical energy and 47.63 % by thermal energy. The yearly electricity demand is 9,938 MWh, costs $1,192,560, and emits 5117.6 tCO2. Thermal energy demand is based on an annual use of 898 tonnes of coal and 71.6 tonnes of liquefied petroleum gas (LPG), which costs $ 143,681 and emits 2977.7 tonnes of carbon dioxide (tCO2). Feasibility of 1.3 MW, fixed axis company-owned, solar PV plant shows an annual electricity production of 1876 MWh, GHG emission reduction of 965.9 tCO2 with a payback period of 3.4 years. Biomass system delivers yearly fuel cost savings of $25,724, reducing 2784 tCO2 with a 1.9-year payback period. Co-firing biomass offers a 3.58 % fuel cost saving and 557 tCO2 with a 0.93-year payback period. It concluded that the wood fuel feedstock biomass option is most suitable renewable energy resource for such large-scale poultry facilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.