Abstract

Caching in the cellular networks has been proposed as a promising technology for reducing the content delivery latency and backhaul cost. Since the backhaul capacity is limited in the practical scenario, the network performance analysis of base station (BS) caching should address the effects of the limited backhaul. This paper investigates the energy efficiency of the cache‐enabled cellular networks with the limited backhaul based on the stochastic geometry method. First, the successful content delivery probability (SCDP), which depends on the successful access delivery probability, successful backhaul delivery probability, and cache hit ratio, is analyzed under the limited backhaul. Based on the obtained SCDP results, we derive the analytical expressions of throughput, power consumption, and energy efficiency for various scenes including the general case, the interference‐limited case, and the mean load approximation case. The accuracy of theoretical analysis is verified by the Monte Carlo simulation. The simulation results show that BS caching can dramatically improve energy efficiency when the content popularity is skewed, the content library size is small, and the backhaul capacity is relatively small. Furthermore, it is confirmed that there exists an optimal BS density which maximizes the energy efficiency of the cache‐enabled cellular networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.