Abstract

ABSTRACT In order to response to the “double carbon” strategy for reducing emissions, chemical production processes were optimized to lower the amount of utility work and equipment investment expenses with increasing the system’s capacity for heat recovery. A sensitivity analysis and the energy efficiency analysis with pinch technique were performed on the distillation and purification of the 30 kt/a isopropyl acetate (IPAC) production process by using process simulation software of Aspen Plus. The IPAC refining tower optimization results show that the purity of the refined IPAC could be reached 99.9% at circumstances of 44 theoretical plates, 19 feed plates, and 0.755 reflux ratio. According to the optimized energy consumption data from Aspen Energy Analyzer (AEA), the cold and heat logistics matching was performed. It can be seen that the heat exchange network was tuned to maximize energy recovery by reducing the amount of utility work. The optimized cold and heat utility usage were 734.69 and 727.81 kW, which meaning that compared with original process, the cold and heat utility usage energy can be save with 10.0%, respectively. The optimized results provide a certain theoretical basis and solution for improving energy saving and reducing investment costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.