Abstract

Using the time-evolution Monte Carlo simulation code DYACAT, the energy distributions of constituent atoms due to big cluster impacts on amorphous targets have been investigated, where the (Ag) n and (Al) n cluster (n being 10 to 500) with energies a few 100 eV/atom to keV/atom are bombarded on amorphous carbon and gold targets, respectively. It is found that the energy distribution of constituent atoms is strongly affected by the mass ratio M 2/M 1 (M 1 and M 2 being the atomic masses of the constituent atom and the target atom, respectively), the size of the cluster, and the cluster energy. In the case of the 1 keV/atom (Ag) 500 cluster impacts on C (M 2/M 1 < 1) the shape of the energy distribution of constituent atoms is trapezoidal, while in the case of the Al cluster impacts on Au (M 2/M 1 > 1) the high-energy tail of the energy distribution of Al atoms due to the big cluster impact ( n > 100) can be well described in terms of the Maxwell-Boltzmann function, and its temperature is linearly proportional to the energy. In the case of 1 keV/atom (Al) 500 cluster impact on Au, the quasi-equilibrium state continues for more than 0.6×10 −13 s, but the temperature of the cluster impact region decreases as time passes. The present simulation supports the recent Echenique, Manson and Ritchie's Ansatz in their theory of cluster impact fusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call