Abstract

A neutral beam test-stand (NBTS) system has been developed for the extraction of a 300 s deuterium beam of 120 kV/65 A as an auxiliary heating system of Korea Superconducting Tokamak Advanced Research (KSTAR). The prototype long pulse ion source (LPIS) consists of a plasma generator and a set of tetrode accelerators. Beam extraction for 300 s was achieved at a maximum hydrogen beam power of 1.6 MW (70 kV/23 A) with an arc discharge power of 63 kW. The energy distribution of the ion source was analyzed by water-flow calorimetry (WFC) by monitoring the cooling-water temperature during the arc discharge. The power dissipation rate on the accelerator column was 0.97% of the total extracted ion beam power with a power loss of 0.2% caused by the collision of back stream electrons with the electron dump plate of the plasma generator. 74.2% of the total energy of was estimated to be distributed in the plasma generator and the accelerator for an arc discharge of 300 s. Also, 75.6% of the total energy was distributed in the ion source for an arc discharge of 2 s. The remaining energy was lost through the structures around the water-cooling path.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.