Abstract

This work presents an experimental study of the effects of finite water depth on the waves generated by a ship in a towing tank. The wakes of two hull forms representative of maritime and river ships are measured for both deep water and shallow water configurations and for several Froude numbers. The free surface deformations are measured with an optical stereo-correlation measurement method to access a full and detailed reconstruction of the wave fields. The spatial resolution of the reconstructed wakes allows us to perform a spectral analysis of the waves generated by the ships and to decompose them into a near-field hydrodynamic response and a far-field undulatory component. First, the spectral analysis method is presented and the effects of finite water depth on a theoretical point of view are studied. The analysis of subcritical, trans-critical, and supercritical ship wakes in both real space and spectral space highlights the effects of the finite water depth, of the ship speed, and of the hull shape on the energy distribution in the ship wakes through these different regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.