Abstract

The energy approach is useful to understand the behavior of structural systems subjected to strong ground motions. In this research, the energy responses from the buckling-restrained braced frames as well as dual systems subjected to the NF and FF earthquakes are investigated and compared. The dual systems consist of reinforced concrete wall and buckling-restrained braces within steel frame adjacent to the wall. The considered structures are designed according to the current codes using the response spectrum analysis. Nonlinear numerical models were created in which the walls were made of fiber element model. The inelastic energy, input energy, kinetic energy, elastic strain energy and damping energy demand were investigated by implementing nonlinear time-history analysis. Also, the inelastic energy distribution pattern along the height was studied. The results show that for both near-field and far-field sets, the maximum inelastic energy dissipation demand belongs to the BRBFs compared to dual system. The wall existence caused the maximum inelastic energy demand to reduce and also leads to more balanced inelastic energy demand along the height of the structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.