Abstract

Low energy dissipation and ability to operate at low temperatures provide for Josephson junction circuits a niche as a support for low temperature devices. With high speed operation (Chen W. et al., 1999) capability the Josephson junction circuits make a prime candidate for applications which are difficult to engineer with existing CMOS technology. The development of Josephson junction technology took a major turn for the better with the invention of the Rapid-Single-Flux-Quantum (RSFQ) devices (Likharev K.K. et al., 1991), an improvement over voltage biased Josephson Junctions logic which were plagued with the junction switching and reset problems. The modern applications of SFQ circuits extend to a larger range of temperature operation and the applications vary from low temperature magnetic sensor, to high speed mixed signal circuits, voltage and current standards (Turner C.W. et al., 1998), and auxiliary components for quantum computing circuits. Most of the SFQ circuits are fabricated with Niobium, but Aluminum based circuits are being used for quantum gates (Nielsen M.A. et al., 2000) and qubit operations. SFQ circuits based on Magnesium di-Boride junctions are being developed for higher temperature operations (Tahara S. et al., 2004). Predominantly most of the Josephson junction circuits today are operated at around 4K. All the circuits are optimized usually for liquid helium temperatures, so the circuits operated in helium bath Dewars or cryostat's do not experience any temperature gradients or drift effects which can affect the operating margins. With the improvement in the fabrication technology and soft-wares for SFQ circuit technology, the designing complex circuits have become easier. Complex Circuits with over 20K junctions such digital synthesizer and digital RF Trans-receiver have already been demonstrated (Oleg M.A. et al., 2011). Development of circuits over 100K junctions are actively under progress. However, with enormously large circuits, power requirements also increase. Looking at the range of applications and complexity of the problems of energy minimization, we try to look at the problem in two approaches. One for large complex circuits, we try to reduce the power bias itself, or the overall load of current that is supplied

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.