Abstract

This paper aims at a deeper understanding of microplastic mechanisms leading to crack initiation in ductile metals in Very High Cycle Fatigue (VHCF). Fatigue tests were conducted using an ultrasonic technique at loading frequency of 20 kHz. The microplastic mechanisms are revealed via observations of slip markings at the specimen surface and self-heating measurements due to intrinsic dissipation. Pure copper and Armco iron (which contains a very low amount of carbon) were investigated. Both are single-phase ductile materials but the crystallographic structure of copper is face-centered cubic while it is body centered cubic for Armco iron. A good correlation was found between slip markings initiation and dissipation for both materials. The dissipation for both materials is of the same order of magnitude but the location, the morphology and the evolution over cycles of slip markings were found different.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call