Abstract

The energy dissipation capacity of bolted joints with viscoelastic layers in a spacecraft structure was investigated. Initially, a linear spring dashpot model was used to represent the bolts in a satellite structure. A relationship was developed between the model parameters (stiffness and damping coefficient) and the viscoelastic material and geometric properties (shear modulus, loss factor, operating area, and thickness) of the actual bolted joint. This model was then developed into the non-linear domain. Experiments on bolted joints with viscoelastic layers were carried out to provide information for the non-linear joint model. These models were incorporated into a simple spacecraft model to investigate the effect on the spacecraft response. Based on these numerical analysis, it was found that the joints can dissipate much energy and the response of the spacecraft structure to vibrations during launch can be decreased significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.