Abstract

A numerical method is proposed to simulate the roughness scale interface dynamics of a slow-moving fluid interface as it advances over a chemically homogeneous rough surface. Analysis of the governing augmented Navier-Stokes and Young's boundary condition equations shows how the local interface behavior can be represented via a series of incrementally advanced equilibrium interfacial morphologies. Combined with a roughness scale mechanical energy balance [Harvie, D. J. E. Contact-angle hysteresis on rough surfaces: mechanical energy balance framework. J. Fluid Mech. 2024, 986, A17], the simulations are used to calculate the energy dissipation associated with a surface decorated with a periodic array of round-edge square pillars. This dissipation is used to predict static contact angle hysteresis (CAH) from knowledge of just the surface roughness topography and equilibrium contact angle. We show that the energy dissipated varies approximately as ϕln ϕ (with ϕ being the area fraction), becoming zero as ϕ → 0. The CAH predicted by our method is in good agreement with the experimental results of Forsberg et al. [Forsberg, P. S.; Priest, C.; Brinkmann, M.; Sedev, R.; Ralston, J. Contact line pinning on microstructured surfaces for liquids in the Wenzel state. Langmuir 2010, 26, 860-865], thereby demonstrating that our numerical method of simulating interfacial dynamics adequately captures the real interface motion, as well as illustrating how far-field contact angle and energy dissipation approaches are consistent for this surface. We also compute CAH for an interface moving at 45° to the surface periodicity direction to show that the experimental measurements are bracketed by the 0° and 45° advance direction results. The proposed method opens up the field to quantitative analysis, surface functionalization, and design for different specific applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.