Abstract

This paper proposes a successive approximation algorithm (SAA) for intelligent vehicle speed adaption (IVSA) based on energy dissipation. As vehicle dynamical system resembles a series of mass/spring/damper systems that are dissipative, i.e., the energy of the system decays to zero eventually, the problem of IVSA is transformed into dissipative control design based on energy storage function. In order to satisfy the γ-performance with respect to the quadratic supply rate, the storage function is developed by using a backstepping based Lyapunov method based on a step-by-step improvement of performance bounds. A dissipative control law is designed by a SAA with a step-by-step reduction of the value of γ. The IVSA simulations are given under variable acceleration condition, whose performances are verified by the comparison of both longitudinal and lateral tracking errors and energy-consuming in different values of γ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.