Abstract

Traveling-wave solutions of the inviscid Burgers equation having smooth initial wave profiles of suitable shapes are known to develop shocks (infinite gradients) in finite times. Such singular solutions are characterized by energy spectra that scale with the wave number k as k−2. In the presence of viscosity ν>0, no shocks can develop, and smooth solutions remain so for all times t>0, eventually decaying to zero as t→∞. At peak energy dissipation, say t=t∗, the spectrum of such a smooth solution extends to a finite dissipation wave number kν and falls off more rapidly, presumably exponentially, for k>kν. The number N of Fourier modes within the so-called inertial range is proportional to kν. This represents the number of modes necessary to resolve the dissipation scale and can be thought of as the system’s number of degrees of freedom. The peak energy dissipation rate ϵ remains positive and becomes independent of ν in the inviscid limit. In this study, we carry out an analysis which verifies the dynamical features described above and derive upper bounds for ϵ and N. It is found that ϵ satisfies ϵ≤ν2α−1‖u∗‖∞2(1−α)‖(−Δ)α/2u∗‖2, where α<1 and u∗=u(x,t∗) is the velocity field at t=t∗. Given ϵ>0 in the limit ν→0, this implies that the energy spectrum remains no steeper than k−2 in that limit. For the critical k−2 scaling, the bound for ϵ reduces to ϵ≤3k0‖u0‖∞‖u0‖2, where k0 marks the lower end of the inertial range and u0=u(x,0). This implies N≤3L‖u0‖∞/ν, where L is the domain size, which is shown to coincide with a rigorous estimate for the number of degrees of freedom defined in terms of local Lyapunov exponents. We demonstrate both analytically and numerically an instance, where the k−2 scaling is uniquely realizable. The numerics also return ϵ and t∗, consistent with analytic values derived from the corresponding limiting weak solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call