Abstract
To enhance the understanding of the dynamic performance of composite beams, assessing their energy accumulation and dissipation capabilities is crucial. The purpose of this paper is to establish a dynamic analysis model of acoustic black hole (ABH) laminated beams based on the Timoshenko beam theory and isogeometric method and to analyze structural intensity and power flow. The vibration governing equation for the ABH laminated beam is derived by calculating its potential and kinetic energy. The convergence of the results is confirmed through multiple mesh refinements, while the model's accuracy and applicability are substantiated through comparisons with the literature, traditional finite element simulations, and experimental data. This investigation into the power flow and structural intensity under varying parameter conditions elucidates the energy transfer mechanisms within ABH laminated beams, offering valuable insights for the deployment of ABH technologies in practical engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.