Abstract

Materials that are able to withstand impact loadings by dissipating energy are crucial for a broad range of different applications, including personal protective applications. Shear-thickening fluids (STFs) are often used for this purpose, but their preparation is still limited, in part, to high production costs. It is demonstrated that polymeric surfactants comprised of linear telechelic sugar-modified silicones-with neither additives nor particles-generate transient polymer networks (TPNs) that represent a promising alternative to STFs. The reported polymers have distinct viscoelastic properties and can turn from a liquid into a rubbery network when force is applied. Saccharide-modified silicones with short chains (degree of polymerization (DP) ≈ 34, 68) are solids, but become energy-absorbing viscoelastic fluids when diluted in low-viscosity silicone oils; longer silicones (DP ≈ 338, 675) with low saccharide contents are viscoelastic fluids at room temperature. Excellent damping properties are found for the reported silicone surfactants, even those containing only 0.1% saccharides. The degree of energy absorption can be tailored simply by controlling the sugar/silicone ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.