Abstract

The dynamics of the scattering of nitric oxide (NO) from well-characterized and ordered layers of carbon monoxide (CO) and ethylidyne (CCH3) adsorbed on a Pt(111) substrate have been investigated through resonance-enhanced multiphoton ionization (REMPI) measurements of the rotational quantum state distributions of the scattered NO molecules for a range of incident NO translational energies between 10 and 50 kJ mol−1 from scattering substrates at 108 and 300 K. The measurements reveal that, where in principle the interaction potential resembles that of the NO–Ag(111) system more so than that of the NO–Pt(111) system, the scattering differs remarkably from that expected from a weakly bound system in that it occurs both into a trapping-desorption channel and a direct inelastic channel. Experimental data are presented that indicate both an incident translational energy dependence and substrate surface temperature dependence of the scattering, which is interpreted in terms of a hard-cube model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.