Abstract

Experimental and computational studies were carried out to investigate the oxidation of pentlandite (Fe4.5Ni4.5S8). The oxidation product was first analyzed by energy dispersive spectrometry to reveal the elemental distribution at the cross section. Our experimental study shows that the Fe atoms in pentlandite migrated to the surface and were preferentially oxidized to form a thin layer of Fe2O3, whereas the Ni atoms remained at the center of the grain. Furthermore, density functional theory calculations were performed to investigate the adsorption and diffusion of atomic oxygen as well as the adsorption and dissociation of molecular oxygen on the (001) and (010) surfaces of pentlandite. From the calculated adsorption energies of atomic oxygen at the different sites of the (001) and (010) surfaces, we found that oxidation of the Fe sites was preferable to that of the Ni sites when exposed to an oxidizing atmosphere. For molecular oxygen adsorption on the surfaces of pentlandite, the bridge sites (Fe-Ni and Fe-Fe) were found to be the most favorable adsorption sites. The dissociative adsorption of O2 is thermodynamically more favorable than the molecular adsorption. Calculated dissociation barriers show that the oxidation is feasible during high temperature roasting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.