Abstract

Molecular dynamics simulations are performed to model C60 and Au3 bombardment of a molecular solid, benzene, in order to understand the energy deposition placement as a function of incident kinetic energy and incident angle. Full simulations are performed for 5 keV projectiles, and the yields are calculated. For higher energies, 20 and 40 keV, the mesoscale energy deposition footprint model is employed to predict trends in yield. The damage accumulation is discussed in relationship to the region where energy is deposited to the sample. The simulations show that the most favorable conditions for increasing the ejection yield and decreasing the damage accumulation are when most of the projectile energy is deposited in the near-surface region. For molecular organic solids, grazing angles are the best choice for achieving these conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.