Abstract

Energy-dependent self-adaptive mesh refinement algorithms are developed for a symmetric interior-penalty scheme for a discontinuous Galerkin spatial discretization of the multi-group neutron diffusion equation using NURBS-based isogeometric analysis (IGA). The spatially self-adaptive algorithms employ both mesh (h) and polynomial degree (p) refinement. The discretized system becomes increasingly ill-conditioned for increasingly large penalty parameters; and there is no gain in accuracy for over penalization. Therefore, optimized penalty parameters are rigorously calculated, for general element types, from a coercivity analysis of the bilinear form. Local mesh refinement allows for a better allocation of computational resources; and thus, more accuracy per degree of freedom. Two a posteriori interpolation-based error measures are proposed. The first heuristically minimizes local contributions to the discretization error, which becomes competitive for global quantities of interest (QoIs). However, for localized QoIs, over energy-dependent meshes, certain multi-group components may become under-resolved. The second employs duality arguments to minimize important error contributions, which consistently and reliably reduces the error in the QoI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call