Abstract

We experimentally study two-body Coulomb explosions of CO2, O2, and CH3Cl molecules in intense femtosecond laser pulses. We observe an obvious variation in the ionic angular distribution of the fragments with respect to the kinetic energy releases (KERs). Using a classical model based on abinitio potential energy curves, we find that the dependence of the ionic angular distribution on the KER is relevant to the fact that the accurate potential energy deviates significantly from the value determined by applying the Coulomb interaction approximation at a relatively small internuclear distance of the molecule. We show that the KER-dependent ionic angular distribution provides an effective way to determine the critical internuclear distance at which the Coulomb interaction approximation holds or breaks down without relying on the knowledge of the accurate potential energy curves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call