Abstract

Transverse momentum spectra of negative and positive pions produced at mid-(pseudo)rapidity in inelastic or non-single-diffractive proton-proton collisions and in central nucleus-nucleus collisions over an energy range from a few GeV to above 10 TeV are analyzed by a (two-component) blast-wave model with Boltzmann-Gibbs statistics and with Tsallis statistics respectively. The model results are in similarly well agreement with the experimental data measured by a few productive collaborations who work at the Heavy Ion Synchrotron (SIS), Super Proton Synchrotron (SPS), Relativistic Heavy Ion Collider (RHIC), and Large Hadron Collider (LHC), respectively. The energy dependent kinetic freeze-out temperature and transverse flow velocity are obtained and analyzed. Both the quantities have quick increase from the SIS to SPS, and slight increase or approximate invariability from the top RHIC to LHC. Around the energy bridge from the SPS to RHIC, the considered quantities in proton-proton collisions obtained by the blast-wave model with Boltzmann-Gibbs statistics show more complex energy dependent behavior comparing with the results in other three cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call