Abstract

Recently, a new mechanism of formaldehyde decomposition leading to molecular products CO and H(2) has been discovered, termed the "roaming atom" mechanism. Formaldehyde decomposition from the ground state via the roaming atom mechanism leads to rotationally cold CO and vibrationally hot H(2), whereas formaldehyde decomposition through the conventional molecular channel leads to rotationally hot CO and vibrationally cold H(2). This discovery has shown that it is possible to have multiple pathways for a reaction leading to the same products with dramatically different product state distributions. Detailed investigations of the dynamics of these two pathways have been reported recently. This paper focuses on an investigation of the energy dependence of the roaming atom mechanism up to 1500 cm(-1) above the threshold of the radical channel, H(2)CO-->H+HCO. The influence of excitation energy on the roaming atom and molecular elimination pathways is reported, and the branching fraction between the roaming atom channel and molecular channel is obtained using high-resolution dc slice imaging and photofragment excitation spectroscopy. From the branching fractions and the reaction rates of the radical channel, the overall competition between all three dissociation channels is estimated. These results are compared with recent quasiclassical trajectory calculations on a global H(2)CO potential energy surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.