Abstract

Extended defects formed by antimony ion implantation in Si(100) are investigated as a function of the implant energy. After implantation, spike annealing and furnace annealing are performed to examine the evolution of defects. The amorphization/recrystallization of the implanted layer is examined by transmission electron microscopy (TEM), photothermal characterization, and Raman spectroscopy. Secondary-ion mass spectroscopy is employed to identify the dopant distribution before and after annealing. Cross-sectional TEM reveals that, at a dose of , Sb implantation is sufficient to induce an amorphous-like layer in Si(100). After spike annealing, the amorphous-like layer restores to the crystalline state, but defects are observed when the Sb implantation energy is greater than . For implantation, extended defects appear at the near-surface and the end-of-range (EOR) regions. It is observed that near-surface defects diminish after spike annealing at temperatures higher than , while the EOR defects become coarse at . A comparison between the spike annealing and the furnace annealing for the sheet resistance and the EOR defect is also addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.