Abstract
We study the energy loss rate of light quarks via the AdS/CFT correspondence in both a static and an expanding plasma. Unlike heavy quarks, light quark energy loss in AdS/CFT is surprisingly dependent on both the string initial conditions and the very definition of the jet itself in the gravity theory. We aim to more closely match the string initial conditions to those expected from perturbative quantum chromodyanics (pQCD)-the theory known to describe the physics of high-momentum particles at early times in heavy ion collisions-by computing the energy-momentum tensor associated with the propagation of the classical string solution. The jet energy-momentum tensor in a strongly-coupled calculation can be found by a superposition of contributions from a collection of point particles whose paths approximate the evolution of the string world-sheet. My results show that some times after creation the pair of quark-anti quark, the energy density is not time dependent. This means that the corresponding jet does not lose energy and the associated nuclear modification factor would be one as expected. Also, the results reveal the virtuality dependency of energy density distribution over space. As expected, the energy of a more virtual jet is spread over wider angles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.