Abstract

In this work a study of the fractional momentum loss ($S_{\rm loss}$) as a function of the characteristic path-length ($L$) and the Bjorken energy density times the equilibration time ($\epsilon_{\rm Bj}\tau_{0}$) for heavy-ion collisions at different $\sqrt{s_{\rm NN}}$ is presented. The study has been conducted using inclusive charged particles from intermediate to large transverse momentum ($5<p_{\rm T}<20$ GeV/$c$). Within uncertainties and for all the transverse momentum values which were explored, the fractional momentum loss linearly increases with $({\epsilon_{\rm Bj}\tau_{0}})^{3/8}$$L$. The functional form of $S_{\rm loss}$ vs. $({\epsilon_{\rm Bj}\tau_{0}})^{3/8}$$L$ seems to be universal. Moreover, for identified charged hadrons a linear relationship between $S_{\rm loss}$ and $L$ is also observed. The behaviour of data could provide important information aimed to understand the parton energy loss mechanism in heavy-ion collisions and some insight into the expected effect for small systems.

Highlights

  • Ultrarelativistic heavy-ion new form of matter featured collisions allow the st√udy by deconfinement

  • Heavy Ion Collider (RHIC) claimed the discovery of a quarkgluon plasma (QGP) which behaved like a perfect fluid and not as the expected gas [1,2,3,4]

  • For each colliding system, the nuclear overlap area was estimated from the number of participants (Npart) distribution obtained from Glauber simulations [8]

Read more

Summary

INTRODUCTION

Ultrarelativistic heavy-ion new form of matter featured collisions allow the st√udy by deconfinement. Based on the preceding discussion the fractional momentum loss is studied as a function of Bjτ0 and L, where for the estimation of the characteristic path length the different geometry for the trajectories have been taken into account. To this end, the ideas presented in Refs. Energy density distributions estimated with Glauber simulations [8] were considered as the distributions of the scattering centers This allows us to test the previously discussed energy loss model [16] by means of the fractional momentum loss for sreeavcehraeldtarat nthsveeLrsHeC-m, o√msNenNtu=m5v.0al2uTeesVan[d24f]o.r the top energy.

Characteristic path length
Fractional momentum loss
RESULTS AND DISCUSSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.