Abstract

We have recently proposed an energy density analysis (EDA) that partitions the total energy of a molecular system into atomic energy densities. In this study, the EDA was applied to internal methyl rotations of o- and m-halogenated toluenes. For toluene and m-halogenated toluenes, the energy density changes of the ortho-carbons are significant for the rotational barrier height. For o-fluorotoluene, the in-plane hydrogen of the methyl group and fluorine forms a hydrogen bond, decreasing the barrier height. It is shown that the EDA technique is a very useful and powerful tool for investigating chemical and physical phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.